FoCS Breadth: Overview of Bioinformatics

Niema Moshiri UC San Diego SPIS 2019

• "Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data" —Wikipedia

- "Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data" —Wikipedia
- "The collection, classification, storage, and analysis of biochemical and biological information using computers especially as applied to molecular genetics and genomics" —Webster Dictionary

- "Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data" —Wikipedia
- "The collection, classification, storage, and analysis of biochemical and biological information using computers especially as applied to molecular genetics and genomics" —Webster Dictionary
- "Bioinformatics is conceptualizing biology in terms of macromolecules and then applying 'informatics' techniques to understand and organize the information associated with these molecules, on a large-scale" —Nick Luscombe

The Central Dogma

• DNA is **transcribed** to RNA

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>
 - Transcription Factor (TF) binds to the gene's promoter

TF

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>
 - Transcription Factor (TF) binds to the gene's promoter

TF

Pol

• RNA Polymerase binds near the transcription start site

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>

TF

- RNA Polymerase binds near the transcription start site
- RNA Polymerase transcribes DNA to RNA...

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>
 - Transcription Factor (TF) binds to the gene's promoter

TF

- RNA Polymerase binds near the transcription start site
- RNA Polymerase transcribes DNA to RNA...

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>
 - Transcription Factor (TF) binds to the gene's promoter

TF

- RNA Polymerase binds near the transcription start site
- RNA Polymerase transcribes DNA to RNA...

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>
 - Transcription Factor (TF) binds to the gene's promoter

TF

- RNA Polymerase binds near the transcription start site
- RNA Polymerase transcribes DNA to RNA... until it hits the transcription end site

- DNA is transcribed to RNA
 - DNA alphabet is {A, C, G, T}
 - RNA alphabet is {A, C, G, U}
- <u>Mechanism</u>
 - Transcription Factor (TF) binds to the gene's promoter

TF

- RNA Polymerase binds near the transcription start site
- RNA Polymerase transcribes DNA to RNA... until it hits the transcription end site

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

• RNA is **translated** to Protein

- mRNA is translated to Protein
 - "Messenger" RNA

- mRNA is translated to Protein
 - "Messenger" RNA
 - RNA alphabet is {A, C, G, U}

- mRNA is translated to Protein
 - "Messenger" RNA
 - RNA alphabet is {A, C, G, U}
 - Protein alphabet is 20 letters

- mRNA is translated to Protein
 - "Messenger" RNA
 - RNA alphabet is {A, C, G, U}
 - Protein alphabet is 20 letters

	U	С	А	G	
υ	$ \left. \begin{matrix} UUU\\ UUC \end{matrix} \right\} Phe \\ UUA\\ UUG \end{matrix} \right\} Leu$	UCU UCC UCA UCG	UAU UAC UAA stop UAG stop	UGU UGC UGA stop UGG Trp	UCAG
с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAG GIn	CGU CGC CGA CGG	U C A G
A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGG Arg	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG Glu	GGU GGC GGA GGG	U C A G

• Each triplet ("codon") of RNA maps to a specific amino acid

first letter

third letter

second letter

Translation: Mechanism

• Translation starts at an early-on AUG (not necessarily the first)

Translation: Mechanism

- Translation starts at an early-on AUG (not necessarily the first)
- Starting with AUG, each codon is "translated" to a specific amino acid

Translation: Mechanism

- Translation starts at an early-on AUG (not necessarily the first)
- Starting with AUG, each codon is "translated" to a specific amino acid
- Translation continues codon-by-codon until a STOP codon is reached

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU
Protein: M

RNA: GAGCUGAUG<mark>GCU</mark>ACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MA

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MAT

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MATT

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MATTH

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MATTHI

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MATTHIA

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MATTHIAS

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU **Protein:** MATTHIAS

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU Protein: MATTHIAS

Protein Structure

• A protein's function is largely based on its structure

The Central Dogma: Summary

Protein: MATTH

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

Transcription

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU

• There is always natural variance (both "genotypic" and "phenotypic") in a population of a given species

- There is always natural variance (both "genotypic" and "phenotypic") in a population of a given species
- <u>Natural Selection</u>: Traits that "improve the fitness" of an organism will cause that organism to be more likely to reproduce

- There is always natural variance (both "genotypic" and "phenotypic") in a population of a given species
- <u>Natural Selection</u>: Traits that "improve the fitness" of an organism will cause that organism to be more likely to reproduce
 - Traits that are "heritable" pass down to its offspring

- There is always natural variance (both "genotypic" and "phenotypic") in a population of a given species
- <u>Natural Selection</u>: Traits that "improve the fitness" of an organism will cause that organism to be more likely to reproduce
 - Traits that are "heritable" pass down to its offspring
 - Individuals without this trait are less likely to reproduce

- There is always natural variance (both "genotypic" and "phenotypic") in a population of a given species
- <u>Natural Selection</u>: Traits that "improve the fitness" of an organism will cause that organism to be more likely to reproduce
 - Traits that are "heritable" pass down to its offspring
 - Individuals without this trait are less likely to reproduce
 - In the next generation, a larger portion of the population will have the trait

Natural Selection: Example

Generation 0

Natural Selection: Example

Generation 0

Natural Selection: Example

Generation 1

Sequence Alignment

• <u>General Idea</u>: If I have two strings *s* and *t*, if I were to stick gaps in

either string, could I make them line up better?

• <u>General Idea</u>: If I have two strings *s* and *t*, if I were to stick gaps in either string, could I make them line up better?

AGTACGTACGT ACGTACGTAAT

• <u>General Idea</u>: If I have two strings *s* and *t*, if I were to stick gaps in either string, could I make them line up better?

A-GTACGTACGT ACGTACGTAA-T

• <u>General Idea</u>: If I have two strings *s* and *t*, if I were to stick gaps in either string, could I make them line up better?

A-GTACGTACGT ACGTACGTAA-T

• <u>General Idea</u>: If I have two strings *s* and *t*, if I were to stick gaps in either string, could I make them line up better?

• <u>Biological Motivation</u>: Align an important gene in human and its "ortholog" (equivalent) in mouse to see which parts are conserved

Given an **alignment**, a **gap penalty** *σ*, and a **scoring matrix** *M*, let the **score** of the alignment be defined as the **sum** of the scores of each position of the alignment, where a position is scored *σ* if either sequence has a **gap**, else *M*(*c*,*c*') where *c* is the symbol at the position in one sequence and *c*' is the symbol at the position in the other sequence

A-GTACGTACGT ACGTACGTAA-T

Score: 0

A-GTACGTACGT ACGTACGTAA-T

Score: 1

A-GTACGTACGT ACGTACGTAA-T

Score: 0

σ = -1

A-GTACGTACGT ACGTACGTAA-T

Score: 1

A-GTACGTACGT ACGTACGTAA-T

Score: 2

A-GTACGTACGT ACGTACGTAA-T

Score: 3

A-GTACGTACGT ACGTACGTAA-T

Score: 4

A-GTACGTACGT ACGTACGTAA-T

Score: 5

A-GTACGTACGT ACGTACGTAA-T

Score: 6

A-GTACGTACGT ACGTACGTAA-T

Score: 7

A-GTACGTACGT ACGTACGTAA-T

Score: 6

A-GTACGTACGT ACGTACGTAA-T

Score: 5

σ = -1

A-GTACGTACGT ACGTACGTAA-T

Score: 6

A-GTACGTACGT ACGTACGTAA-T

Score: 6

Score: 6

We want to maximize this scoring function

The Global Alignment Problem

Given two strings *s* and *t*, a gap penalty *σ*, and a scoring matrix *M*, return a **maximum-scoring** alignment of *s* and *t*

The Global Alignment Problem

Given two strings *s* and *t*, a gap penalty *σ*, and a scoring matrix *M*, return a **maximum-scoring** alignment of *s* and *t*

AGTACGTACGT ACGTACGTAAT ACGTACGTAA-T

The Local Alignment Problem

Given two strings s and t, a gap penalty σ, and a scoring matrix M, return a maximum-scoring alignment of a substring of s and a substring of t

The Local Alignment Problem

Given two strings s and t, a gap penalty σ, and a scoring matrix M, return a maximum-scoring alignment of a substring of s and a substring of t

The Multiple Sequence Alignment Problem

Given **multiple strings**, a gap penalty *σ*, and a scoring matrix *M*, return a **maximum-scoring** alignment of the strings

The Multiple Sequence Alignment Problem

Given **multiple strings**, a gap penalty *σ*, and a scoring matrix *M*, return a **maximum-scoring** alignment of the strings

Q5E940 BOVIN	
RLA0 HUMAN	
RLA0 MOUSE	
RLA0_RAT	
RLA0_CHICK	
RLA0 RANSY	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AVYLMGKNTMMRKAIRGHLENNSALE
Q7ZUG3_BRARE	MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE
RLA0_ICTPU	MPREDRATWKSNYFLKIIQLLNDYPKCFIVGADNVGSKQMQTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENNPALE
RLA0_DROME	MVRENKAAWKAQYFIKVVELFDEF <mark>PKCFIVGADNVGS</mark> KQMQNIRTSLRGL-AVVLMGKNTMMRKAIRGHLENNPQLE
RLA0_DICDI	MSGAG-SKRKKLFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSKPELD
Q54LP0_DICDI	MSGAG-SKRKNYFIEKATKLFTTYDKMIYAEADFYGSSQLQKIRKSIRGI-GAYLMGKKTMIRKYIRDLADSKPELD
RLA0_PLAF8	MAKLSKQQK <mark>K</mark> QMYIEKLSSLIQQYSKILIVHYDNY <mark>GS</mark> N <mark>Q</mark> MASY <mark>R</mark> KSL <mark>RG</mark> K-ATILM <mark>GKNT</mark> RIRTALKKNLQAYPQIE
RLA0_SULAC	MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHEIRKKLRGK-ADIKVTKNNLFNIALKNAGYDT
RLA0_SULTO	MRIMAVITQERKIAKW <mark>K</mark> IEEVKELE <mark>Q</mark> KLREYHTIIIANI <mark>EG</mark> FPADKLHDI <mark>R</mark> KKM <mark>RG</mark> M-AEI <mark>KVTKNT</mark> LF <mark>G</mark> IAAKNAGLDVS
RLA0_SULSO	MKRLALALKQRKVASW <mark>K</mark> LEEVKELT <mark>ELI</mark> KNSNTILI <mark>G</mark> NLEGFPADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAGIDIE
RLA0_AERPE	MSVVSLV <mark>G</mark> QMYKREK <mark>PIPEWK</mark> TLMLRELE <mark>ELFSKHRVVLFADLTGTPT</mark> FVV <mark>Q</mark> RVRKKLWKK-YPMMVAKKRIILRAMKAAGLELDDN
RLA0_PYRAE	-MMLAIGKRRYARTRQYPARKAKIASEATELLQKYPYAFLFDLHGLSSRILHEYRYRLRRY-GAIKIIKPTLFKIAFTKAYGGIPAE
RLA0_METAC	MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLGETIP
RLA0_METMA	MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLGESIP

Variant Calling

Variant Calling

• Any two humans have genomes that are roughly 99.9% identical

Variant Calling

- Any two humans have genomes that are roughly 99.9% identical
- Single Nucleotide Variants (SNVs)

ACATACGTACGT ACGTACGTACGT ACGTACGTACGT ACATACGTTCGT ACGTACGTACGT ACGTACGTACGT ACATACGTACGT ACGTACGTACGT ACGTACGTTCGT
Variant Calling

- Any two humans have genomes that are roughly 99.9% identical
- Single Nucleotide Variants (SNVs)
- Structural Variants (SVs)

ACAGCAGCAGCAGTT ACAGCAGTT ACAGTT ACAGCAGCAGTT

• Sequence the DNA of the individual

- Sequence the DNA of the individual
- Align the reads to the reference genome

- Sequence the DNA of the individual
- Align the reads to the reference genome
- For each site in the genome, predict the genotype based on the reads
 ACTTACGT
 GTACGTAC
 TACGTACG
 CTTACGTA
 CGTACTTA
 REF: ...ACGTACGTACGTACGTACGTACGT...

- Sequence the DNA of the individual
- Align the reads to the reference genome
- For each site in the genome, predict the genotype based on the reads

SNV Calling: Challenges

• Some regions of the genome are difficult to sequence

SNV Calling: Challenges

- Some regions of the genome are difficult to sequence
- Sequencing technologies have sequencing error

SNV Calling: Challenges

- Some regions of the genome are difficult to sequence
- Sequencing technologies have sequencing error
- Sequencing technologies have sampling error

• Once we've called SNVs and SVs in enough people, what can we do?

- Once we've called SNVs and SVs in enough people, what can we do?
 - Genome-Wide Association Studies (GWAS)

- Once we've called SNVs and SVs in enough people, what can we do?
 - Genome-Wide Association Studies (GWAS)
 - Genetic Ancestry/Admixture

- Once we've called SNVs and SVs in enough people, what can we do?
 - Genome-Wide Association Studies (GWAS)
 - Genetic Ancestry/Admixture
 - Genetic Counseling

Differential Expression Analysis

• All cells in the body have (roughly) identical genomes

- All cells in the body have (roughly) identical genomes
 - Differences in how they look/function are caused by "differential expression" of genes

- All cells in the body have (roughly) identical genomes
 - Differences in how they look/function are caused by "differential expression" of genes
- <u>Biological Question</u>: Given two different samples, what genes are differentially expressed across them?

- All cells in the body have (roughly) identical genomes
 - Differences in how they look/function are caused by "differential expression" of genes
- <u>Biological Question</u>: Given two different samples, what genes are differentially expressed across them?
 - We want to measure protein levels, but we can't in high-throughput

- All cells in the body have (roughly) identical genomes
 - Differences in how they look/function are caused by "differential expression" of genes
- <u>Biological Question</u>: Given two different samples, what genes are differentially expressed across them?
 - We want to measure protein levels, but we can't in high-throughput
 - Instead, we measure RNA levels

• Reverse Transcribe RNA to DNA

- Reverse Transcribe RNA to DNA
- Sequence the resulting DNA

- Reverse Transcribe RNA to DNA
- Sequence the resulting DNA
- Align the reads to the reference genome

- Reverse Transcribe RNA to DNA
- Sequence the resulting DNA

	Align	the	reads	to	the	reference	genome
--	-------	-----	-------	----	-----	-----------	--------

• Count the number of reads that mapped to each gene

Gene	Sample 1 Count	Sample 2 Count	
A	###	###	
В	###	###	
С	####	###	

- Reverse Transcribe RNA to DNA
- Sequence the resulting DNA

				<i>c</i>	
)	Align tl	he reads	to the	reference	genome

- Count the number of reads that mapped to each gene
- Normalize by gene length and by sequencing depth

Gene	Sample 1 FPKM	Sample 2 FPKM	
А	###	###	
В	###	###	
С	###	###	

- Reverse Transcribe RNA to DNA
- Sequence the resulting DNA

Gene	Sample 1 FPKM	Sample 2 FPKM	Log-2 Ratio	p
А	###	###	###	###
В	###	###	###	###
С	###	###	###	###

- Align the reads to the reference genome
- Count the number of reads that mapped to each gene
- Normalize by gene length and by sequencing depth
- Perform differential expression statistical tests for each gene

• What is the genome sequence of a given organism?

...ATACAGTGGAACACCATCTG...

- What is the genome sequence of a given organism?
- We are able to sequence small fragments of an organism's genome

ATACAG CAGTGG GGAACA CACCAT CCATCT

- What is the genome sequence of a given organism?
- We are able to sequence small fragments of an organism's genome
- How do we tie these small fragments together into a single string?
 ATACAG
 CAGTGG
 GGAACA
 CACCAT
 CACCAT
 CCATCT
 - ...ATACAGTGGAACACCATCTG...

- What is the genome sequence of a given organism?
- We are able to sequence small fragments of an organism's genome
- How do we tie these small fragments together into a single string?

• <u>Computational Problem</u>: Given a list of strings *reads*, find the shortest superstring of *reads*

Phylogenetics

Present-Day Species

Models of Evolution

Models of Evolution

• <u>Models of Tree Evolution</u>: Describe a probability distribution over the

shapes of the phylogenetic trees
Models of Evolution

- <u>Models of Tree Evolution</u>: Describe a probability distribution over the shapes of the phylogenetic trees
 - Are some tree topologies more likely to be observed?

Models of Evolution

- <u>Models of Tree Evolution</u>: Describe a probability distribution over the shapes of the phylogenetic trees
 - Are some tree topologies more likely to be observed?

• <u>Models of Sequence Evolution</u>: Describe a probability distribution over the observed sequences

Models of Evolution

- <u>Models of Tree Evolution</u>: Describe a probability distribution over the shapes of the phylogenetic trees
 - Are some tree topologies more likely to be observed?

- <u>Models of Sequence Evolution</u>: Describe a probability distribution over the observed sequences
 - Are some sequences more likely to be observed (e.g. fitness)?

Phylogenetic Inference

• Can we somehow reconstruct the evolutionary history of species based solely on their sequences?

Phylogenetic Inference

- Can we somehow reconstruct the evolutionary history of species based solely on their sequences?
 - Raw Sequences → Multiple Sequence Alignment → Tree

Phylogenetic Inference

- Can we somehow reconstruct the evolutionary history of species based solely on their sequences?
 - Raw Sequences → Multiple Sequence Alignment → Tree
- <u>Maximum Likelihood</u>: Given a multiple sequence alignment and a model of (sequence evolution), find the tree that maximizes the "likelihood function" (i.e., probability of observing the alignment given the tree)

• We started with some basic molecular biology review

- We started with some basic molecular biology review
- We then introduced multiple important biological problems and discussed their bioinformatics computational problem formulation

- We started with some basic molecular biology review
- We then introduced multiple important biological problems and discussed their bioinformatics computational problem formulation
- **Bioinformatics = BIG data!**

- We started with some basic molecular biology review
- We then introduced multiple important biological problems and discussed their bioinformatics computational problem formulation
- Bioinformatics = BIG data!
 - We need efficient algorithms

- We started with some basic molecular biology review
- We then introduced multiple important biological problems and discussed their bioinformatics computational problem formulation
- Bioinformatics = BIG data!
 - We need efficient algorithms
 - We need optimized implementations of these algorithms