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What is Bioinformatics?

e “Bioinformatics is an interdisciplinary field that develops methods and
software tools for understanding biological data” —Wikipedia

e “The collection, classification, storage, and analysis of biochemical and
biological information using computers especially as applied to
molecular genetics and genomics” —Webster Dictionary

e “Bioinformatics is conceptualizing biology in terms of macromolecules
and then applying ‘informatics’ techniques to understand and organize
the information associated with these molecules, on a large-scale”
—Nick Luscombe
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Bioinformatics

Biology Computer
Science

Chemistry? Physics? Statistics?
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e mMRNA is translated to Protein

O

o RNA alphabet is {A, C, G, U}
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A. Amino Acids with Electrically Charged Side Chains
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Translation

e mMRNA is translated to Protein

o “Messenger” RNA

o RNA alphabet is {A, C, G, U}

o Protein alphabet is 20 letters

first letter

second letter
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cuUG CCG CAG CGG G
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o Each triplet (“codon”) of RNA maps to a specific amino acid

third letter
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Translation: Mechanism

e Translation starts at an early-on AUG (not necessarily the first)

e Starting with AUG, each codon is “translated” to a specific amino acid

e Translation continues codon-by-codon until a STOP codon is reached
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Translation: Summary

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU
Protein: MATTHIAS

The structure of a typical human protein coding mRNA including the untranslated regions (UTRs)

Cap |5' UTR Coding sequence (CDS) 3' UTR Pct>ly|-A
Start Stop al

5I 3I



Protein Structure

e A protein’s function is largely based on its structure




The Central Dogma: Summary

DNA: GAGCTGATGGCTACTACACATATTGCCAGTTGATGGGTT

1 Transcription

RNA: GAGCUGAUGGCUACUACACAUAUUGCCAGUUGAUGGGUU

.O(\
«¥§
a\Ge

Protein: MATTHIAS
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Natural Selection
e There is always natural variance (both “genotypic” and “phenotypic”) in
a population of a given species

e Natural Selection: Traits that “improve the fithess” of an organism will
cause that organism to be more likely to reproduce

o Traits that are “heritable” pass down to its offspring
o Individuals without this trait are less likely to reproduce

o In the next generation, a larger portion of the population will have
the trait
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Pairwise Sequence Alignment

e Generalldea: If | have two strings s and ¢, if | were to stick gaps in

either string, could | make them line up better?

e Biological Motivation: Align an important gene in human and its

“ortholog” (equivalent) in mouse to see which parts are conserved



Pairwise Sequence Alignment: Scoring Function

Given an alignment, a gap penalty o, and a scoring matrix M, let the
score of the alignment be defined as the sum of the scores of each
position of the alignment, where a position is scored o if either sequence
has a gap, else M(c,c’) where c is the symbol at the position in one

sequence and ¢’ is the symbol at the position in the other sequence
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Pairwise Sequence Alignment: Scoring Function

A-GTACGTACGT

6
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Given two strings s and t, a gap penalty o, and a scoring matrix M,
return a maximum-scoring alignment of s and t

AGTACGTACGT A-GTACGTACGT
ACGTACGTAAT ACGTACGTAA-T
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Given two strings s and t, a gap penalty o, and a scoring matrix M,
return a maximume-scoring alignment of
a substring of s and a substring of t

AGTACGTACGT ‘ GTACGTA
ACGTACGTAAT GTACGTA
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Given multiple strings, a gap penalty o, and a scoring matrix M,
return a maximume-scoring allgnment of the strings
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Variant Calling

e Any two humans have genomes that are roughly 99.9% identical

e Single Nucleotide Variants (SNVs)

e Structural Variants (SVs) ACAGCAGCAGCAGTT
ACAGCAGTT
ACAGTT
ACAGCAGCAGTT
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SNV Calling: General Approach

e Sequence the DNA of the individual
e Align the reads to the reference genome

e [or each site in the genome, predict the genotype based on the reads
ACTTACGT

GTACGTAC .
TACGTACG 50% G ‘
CTTACGTA 50% T
CGTACTTA
REF: ...ACGTACGTACGTACGTACGTACGT. ..
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SNV Calling: Challenges

e Some regions of the genome are difficult to sequence
e Sequencing technologies have sequencing error

e Sequencing technologies have sampling error
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Population Genetics

e Once we've called SNVs and SVs in enough people, what can we do?
o Genome-Wide Association Studies (GWAS)
o Genetic Ancestry/Admixture

o Genetic Counseling
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Differential Expression Analysis: RNA-Seq

e All cells in the body have (roughly) identical genomes
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o Differences in how they look/function are caused by “differential
expression” of genes
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Differential Expression Analysis: RNA-Seq

e All cells in the body have (roughly) identical genomes

o Differences in how they look/function are caused by “differential
expression” of genes

e Biological Question: Given two different samples, what genes are

differentially expressed across them?
o We want to measure protein levels, but we can’t in high-throughput

o Instead, we measure RNA levels
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SNV Calling: General Approach

Sample1 Sample2 Log-2

Gene

FPKM FPKM Ratio
® Reverse Transcribe RNA to DNA A #itH HitH Hitt i
B Hit# HitHt HHHt H#H

e Sequence the resulting DNA

C HH# Hit# HHH

e Align the reads to the reference genome
e Count the number of reads that mapped to each gene
e Normalize by gene length and by sequencing depth

e Perform differential expression statistical tests for each gene
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e What is the genome sequence of a given organism?
e We are able to sequence small fragments of an organism’s genome

e How do we tie these small fragments together into a single string?
ATACAG
CAGTGG
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Genome Assembly

e What is the genome sequence of a given organism?
e We are able to sequence small fragments of an organism’s genome

e How do we tie these small fragments together into a single string?

e Computational Problem: Given a list of strings reads, find the shortest

superstring of reads
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Models of Evolution

e Models of Tree Evolution: Describe a probability distribution over the

shapes of the phylogenetic trees

o Are some tree topologies more likely to be observed?

e Models of Sequence Evolution: Describe a probability distribution over

the observed sequences

o Are some sequences more likely to be observed (e.g. fithess)?
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Phylogenetic Inference

e Can we somehow reconstruct the evolutionary history of species

based solely on their sequences?
o Raw Sequences » Multiple Sequence Alignment = Tree

e Maximum Likelihood: Given a multiple sequence alignment and a

model of (sequence evolution), find the tree that maximizes the
“likelihood function” (i.e., probability of observing the alignment given

the tree)



Summary



Summary

e We started with some basic molecular biology review



Summary

e \We started with some basic molecular biology review

e We then introduced multiple important biological problems and

discussed their bioinformatics computational problem formulation



Summary

e \We started with some basic molecular biology review

e We then introduced multiple important biological problems and

discussed their bioinformatics computational problem formulation

e Bioinformatics = BIG data!



Summary

e \We started with some basic molecular biology review

e We then introduced multiple important biological problems and

discussed their bioinformatics computational problem formulation
e Bioinformatics = BIG data!

o We need efficient algorithms



Summary

e \We started with some basic molecular biology review

e We then introduced multiple important biological problems and

discussed their bioinformatics computational problem formulation
e Bioinformatics = BIG data!
o We need efficient algorithms

o We need optimized implementations of these algorithms



